
Realtime Style Transfer for Unlabeled Heterogeneous Human Motion

Shihong Xia1 Congyi Wang1 Jinxiang Chai2∗ Jessica Hodgins3

1Institute of Computing Technology, CAS 2Texas A&M University 3Carnegie Mellon University

Figure 1: Our realtime style generation system automatically transforms an unlabeled, heterogeneous motion sequence into a new style.
(top) the input motion in the “neutral” style; (bottom) the output animation in the “proud” style. Note the more energetic arm motions and
jump in the stylized motion.

Abstract

This paper presents a novel solution for realtime generation of
stylistic human motion that automatically transforms unlabeled,
heterogeneous motion data into new styles. The key idea of
our approach is an online learning algorithm that automatically
constructs a series of local mixtures of autoregressive models
(MAR) to capture the complex relationships between styles of
motion. We construct local MAR models on the fly by searching
for the closest examples of each input pose in the database. Once
the model parameters are estimated from the training data, the
model adapts the current pose with simple linear transformations.
In addition, we introduce an efficient local regression model to
predict the timings of synthesized poses in the output style. We
demonstrate the power of our approach by transferring stylistic
human motion for a wide variety of actions, including walking,
running, punching, kicking, jumping and transitions between
those behaviors. Our method achieves superior performance in a
comparison against alternative methods. We have also performed
experiments to evaluate the generalization ability of our data-driven
model as well as the key components of our system.

I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—animation;

Keywords: Character animation, realtime style transfer, online
local regression, data-driven motion synthesis

∗Contact author: jchai@cs.tamu.edu

1 Introduction

Stylistic variations in motion that suggest a particular personality,
mood or role are essential for storytelling and for bringing
characters to life. For everyday actions such as locomotion, the
style or emotion of a motion might convey more meaning than the
underlying motion itself. For example, the anger conveyed by “he
stalked across the room” is likely more significant than the act of
crossing the room. Thus far, one of the most successful solutions to
this problem is to model style differences between example motions
and use the learned model to transfer motion from one style to
another one (e.g., [Amaya et al. 1996; Hsu et al. 2005]).

Hsu and colleagues [2005] introduced a linear time-invariant (LTI)
model to encode style differences between example motions and
achieved realtime performance for transferring the input motion
from one style to another. Despite the progress made over the past
decade, creating appropriate data-driven models for online style
transfer remains challenging for two reasons.

First, a lifelike human character must possess a rich repertoire
of activities and display a wide range of variations for
a given action. This task inevitably requires data-driven
models that can scale to large and heterogeneous motion data
sets. However, most existing techniques are challenged when
applied to input motion that contains heterogeneous behaviors
such as walking⇒running⇒ jumping because they assume that
the relationship between the input and output styles can be
approximated by a global linear model, such as the LTI model
described by Hsu and colleagues [2005]. Global linear models are
often appropriate for homogenous data sets (e.g., walking), but
might not be suitable for complex heterogeneous motion data.

A second challenge is that previous work on style transfer often
requires that the input motion is labeled in terms of behavior and
style attributes before transferring it to a new style. However,
automatically labeling the input motion in terms of behavior
and style attributes remains difficult, particularly for online
applications. The problem becomes even worse when the input
motion cannot be classified into a single predefined behavior or
style. For example, a “proud” walk performed by an old man might



display a hybrid style of “proud” and “old” and therefore cannot be
classified into either “proud” or “old”.

This paper presents a novel solution that addresses both challenges
(Figure 1). The key idea of our approach is an online learning
algorithm that automatically builds a series of local mixtures of
autoregressive (MAR) models to describe the differences between
the input and output styles. We construct local regression models
on the fly by searching for the closest examples of each input pose
in the training database. Once the model parameters are estimated
from the training data, the model transforms the input poses into
the output style with simple linear transformations. A new local
model is created to transform each successive pose. The local
model avoids the problem of finding an appropriate structure for
a global model, which would necessarily be complex and highly
nonlinear for heterogeneous motion data.

We further extend the local regression model to mixtures of local
regression models to automatically handle unlabeled input motion
data. To achieve this goal, we annotated the training data in terms
of behavior and style attributes in the preprocessing step. At run
time, we construct local autoregressive models that correspond
to every combination of predefined behaviors and styles and
optimally predict the output poses by interpolating/extrapolating
the prediction results obtained by each of local model.

We demonstrate the power and effectiveness of our method on
a wide variety of human movements, including a wide range of
walking data as well as heterogeneous actions containing walking,
running, punching, kicking, jumping and transitions between those
behaviors. We show that our method advances the state of the
art by comparing it against alternative methods, including LTI
models [Hsu et al. 2005] and Gaussian process models [Ikemoto
et al. 2009]. The evaluation shows that our method obtains
consistently better results than alternative methods for all types of
test data. More significantly, our method can handle unlabeled,
heterogeneous input motion sequences, a capability that has not
been demonstrated in any previous work. Finally, we assess the
generalization ability of our model and perform experiments to
evaluate the key components of our system.

1.1 Contributions

Our approach to realtime style synthesis and control includes a
number of technical contributions:

• A novel online local MAR model that automatically
transforms an unlabeled heterogeneous motion data into
different styles, a capability that has not been demonstrated
in previous work.

• A simple yet effective online regression model that models the
temporal differences between the input and output styles.

• An extension of our spatial-temporal model to handle input
motion that differs significantly from the training motions.
This extension significantly improves the generalization
ability of our model.

• A style interpolation scheme that allows for realtime control
of output styles by blending the parameters of distinctive
styles on the fly.

2 Background

We construct a data-driven model to represent spatial-temporal
differences between styles of motion and use it to transfer input
motion data from one style to another. We therefore focus our

discussion on stylistic motion generation and data-driven motion
modeling.

Stylistic motion generation. One solution to stylistic motion
synthesis is style translation [Amaya et al. 1996; Hsu et al. 2005;
Shapiro et al. 2006; Ikemoto et al. 2009], which models style
by examining differences between example motions and uses the
extracted styles to transfer the input motion from one style to
another one. Hsu and colleagues [2005] encoded the transformation
between two motions with the same behavior but different styles as
a linear time-invariant system. Once this system has been identified,
the transformation can be applied to a new motion faster than
real time, producing a corresponding motion in the learned style.
Ikemoto and colleagues [2009] introduced a nonparametric model
of the transformation between motion sequences using Gaussian
process models of kinematics and dynamics and applied them to
edit the input motion into a desired style.

Researchers have also explored data-driven approaches that build
statistical motion models for interpreting motion variations caused
by a single factor (e.g., style) [Brand and Hertzmann 2000] or
multiple factors (e.g., gait, identity, and state) [Wang et al. 2007;
Min et al. 2010]. For example, Brand and Hertzmann [2000]
modeled the space of content and style as a parameterized set of
hidden Markov models. Wang and his colleagues [2007] introduced
Gaussian Process latent model with a multifactor kernel to capture
stylistic variations of human motion. Min and his colleagues [2010]
recently extended the idea to modeling both “style” and “identity”
of human motion. They used a large corpus of preregistered motion
data to construct a multilinear motion model to explicitly model
both “style” and “identity” variations in the same action.

Our method is most closely related to the work of Hsu and
colleagues [2005]. Both methods aim to model the relationship
between styles of motion using example motion data and use the
learned model to rapidly transform the input motion into different
styles. Our motion model, however, is significantly different
from theirs because we model the style differences using a series
of local mixtures of autoregressive models rather than the linear
time-invariant model adopted in their system. One advantage
of our online local models is the ability to handle unlabeled,
heterogeneous motion data. Section 7.2 shows that our model
produces more accurate results than their approach and can handle
unlabeled motion data.

Data-driven motion modeling. Our work builds upon a significant
body of recent work that utilizes prerecorded data for human
motion modeling. One solution is weighted interpolations of
motion examples [Rose et al. 1998; Kovar and Gleicher 2004].
Motion interpolation registers a set of structurally similar but
distinctive motion examples and then parameterizes them in an
abstract space defined for motion control. Given the control
parameters’s new values, the sequences can be smoothly blended
with appropriate kernel functions such as radial basis functions.
Statistical models provides an appealing alternative for human
motion modeling because they are compact and can be used
to generate an infinite number of motions that are not in the
prerecorded motion data. Recently, a wide variety of statistical
motion models have been developed and their applications include
motion synthesis [Chai and Hodgins 2007; Lau et al. 2009; Min
and Chai 2012], inverse kinematics [Grochow et al. 2004], and
performance-based animation [Chai and Hodgins 2005].

However, none of these approaches focuses on modeling
spatial-temporal differences between styles of motion, a goal
targeted by our paper. In addition, our model is significantly
different because we use a series of local mixtures of autoregressive
models to model the transformation between the input and output



Figure 2: System overview.

styles.

3 Overview

Our goal is to transform input motion data into a sequence of frames
in the output style. We assume that the input frames arrive one at
a time and are processed in an online manner. We also assume that
the input frames do not have labels for action or style attributes.
Our system contains three major components (Figure 2):

Motion registration and annotation. Our method is data-driven
because it utilizes the prior knowledge embedded in a prerecorded
motion database to do style transformation. We therefore discuss
how to preprocess the prerecorded motion data for data-driven
style modeling. For each action in the database, we register all
of the motion examples against each other and annotate them
in terms of “action” and “style” attributes. In addition, all the
database examples are annotated with contact information and this
information allows us to remove foot sliding artifacts in the output
animation.

Stylistic motion modeling and generation. The key challenge
here is to model the spatial-temporal relationship between styles
of motion from the preprocessed motion database. The problem is
challenging because the transformation is often complex and highly
nonlinear and the input motion is often unlabeled. Our key idea is to
use an online learning algorithm to automatically construct a series
of local regression models to approximate the spatial-temporal
transformation at each frame. Specifically, we construct local
regression models on the fly from the closest examples of each
input pose in the database. We further extend the local regression
models to mixture of local regression models in order to handle
the unlabeled input motion. In addition, we discuss how to extend
our style translation method to handle input motion data that differs
significantly from the training motions.

Postprocessing. The synthesized motion often violates

environmental contact constraints. We introduce an efficient
classification algorithm to automatically detect footplant
constraints in the input motion. We utilize the detected footplant
constraints to remove foot sliding artifacts in output animation.

We describe these components in more detail in the next three
sections.

4 Motion Registration and Annotation

We performed a series of offline captures to create a large and
heterogeneous human stylistic motion database of about 11 minutes
using a Vicon optical motion capture system [Vicon 2015] with
eighteen 120 Hz cameras. The database consists of a wide
variety of human actions, including walking, running, jumping,
kicking, punching and transitions between those behaviors. For
each action, we recorded motion examples corresponding to eight
distinctive styles: neutral, proud, angry, depressed, strutting,
childlike, old, and sexy. Except for the root joint, all joint angles
are converted to Cartesian parameters with the exponential-map
parameterization [Grassia 1998]. This representation ensures
proper manipulation of the joint-angle quantities required for style
translation.

We register all of the motion examples corresponding to the same
action against each other because they are structurally similar. For
example, we can pick a “neutral” walk as a reference motion and
use it to register all of the walking motions in the database with
appropriate time warping functions. In our implementation, we
register the motion examples in a translation- and rotation-invariant
way by decoupling each pose from its translation in the ground
plane and the rotation of its hips about the vertical axis [Kovar and
Gleicher 2003].

We annotate all of the registered motion examples in terms of
“action” and “style” attributes. Motion annotation is important
because it allows us not only to model heterogeneous motion data



but also to transform an input motion without knowing its action
and/or style. In our experiments, style and action annotations were
achieved without any manual intervention because we instructed
the subject to perform each motion with a particular action and style
during the motion capture session.

In addition, we annotate the motion examples with contact
information. Contact annotations were achieved by annotating the
canonical timeline (i.e., the timeline of the reference motion) of
each action. For example, annotating the “walking” examples is
achieved by annotating four contact instances on the canonical
timeline (“left foot down”, “left foot up,” “right foot down”, and
“right foot up”). In our implementation, we encode the contact
information of each frame using a binary feature vector. Each bit
represents a particular type of contact event, e.g., the left foot plants
on the ground. Each frame requires only a 2-bit label (left foot and
right foot). Contact annotations enable us to automatically enforce
environmental contact constraints in the style translation process,
thereby eliminating noticeable visual artifacts such as foot sliding
in the output animation. The entire process for annotating contacts
takes several minutes for a 11 minutes motion capture database
because we only need to annotate the canonical timeline of each
action.

5 Stylistic Motion Modeling and Translation

We now describe how to utilize the preprocessed motion database
to translate an input motion into a sequence of frames in the output
style. Section 5.1 introduces the online regression models that
represent the key idea in our approach. We assume that the input
motion data are labeled in terms of action and style attributes.
In Section 5.2, we extend the method to handle unlabeled input
motion data. We then discuss how to further extend our data-driven
model to handle input motion data that differs significantly from
the training motions in Section 5.3. Section 5.4 introduces our style
interpolation scheme that allows for realtime style control in the
output animation.

5.1 Online Regression Models

We present an online learning algorithm [Aha 1997; Chai and
Hodgins 2005] to automatically construct a series of local
regression models to approximate the spatial-temporal relationship
between the input and output styles. The online learning algorithm
postpones all computation until an explicit request for information
(e.g., prediction) is received. To predict the output style at
the current frame, we first search the preprocessed database for
examples that are close to the current input frame. These examples
are then used as training data to learn a regression model for
predicting the pose and timing of an output frame. Once its
model parameters are estimated from the training data, the model
translates the current pose with simple linear transformations. A
new regression model is created to translate each successive pose.
Therefore, our regression model is time-varying because its model
parameters are functions of time.

KNN search. Constructing a time-varying regression model
requires identifying the K nearest neighbors (KNN) in the
preprocessed database for each input pose. We perform KNN
searches only on the database examples that are annotated with
the same style and action as the input frame. We compute the
distance between the input pose and a database example based
on the poses formed over two sliding windows of frames of a
user-defined length s. The use of the temporal window effectively
incorporates derivative information into the distance metric. In our
experiment, s is set to 5 frames or 1/24 second.

0 50 100 150 200 250
15

20

25

30

35

40

45

50

55

60

65

frame number

jo
in

t 
a
n

g
le

(d
e
g

re
e
)

 

 

ground truth

LTI

global AR

our method

Figure 3: Comparing our online local model against LTI and
global autoregressive model (GAR): the comparison curves show
the values of one DOF (right humerus) from all three methods and
ground truth data over time. The evaluation is based on cross
validation described in Section 7.2.

We compute the distance between two skeletal poses in terms
of a point cloud driven by the skeleton [Kovar et al. 2002].
Mathematically, we calculate the minimal weighted sum of squared
distances given that an arbitrary rigid 2D transformation may be
applied to the second point cloud:

min
θ ,x0,z0

∑
i

wi‖pi−Tθ ,x0,z0 p′i‖2, (1)

where pi and p′i are 3D positions corresponding to the query and
database poses. The linear transformation Tθ ,x0,z0 rotates a point
p′i about the y (vertical) axis by θ degrees and then translates it
by (x0,z0) on the floor plane. The weight wi may be chosen both to
assign more importance to certain joints and to taper off towards the
end of the window. When the skeleton structure of the input motion
data is different from the skeletal model of our training data, we
perform a motion retargeting step for the input motion using the
method described in [Monzani et al. 2000].

Pose translation. We now describe how to use the closest examples
of the current frame to construct an efficient online regression
model for style translation. Our model constrains the input-output
mapping to a specific form; namely, it assumes that each degree
of freedom of the skeletal pose is independent of the others.
This idea is motivated by the success of previous work on style
translation [Amaya et al. 1996; Hsu et al. 2005] that processes each
degree of freedom of input motion data separately.

For each degree of freedom, we adopt a time-varying autoregressive
model to explain the relationship between the input and output
styles:

yt = uT
t βt + εt , (2)

where xt and yt are the input and output variables at frame t.
These equations describe the mapping between an input ut =
[xt−1,yt−1,xt ,1]T and an output yt . The model parameters βt =
[at ,bt ,ct ,dt ]

T determine the mapping between the input and the
output at the current frame. εt v N(0,σ) is a white noise term that
accounts for measurement errors.

Given the K closest examples for the current pose, we estimate
the model parameters using a linear least squares regression. We
introduce a regularization term, λ‖βt‖2, to reduce ambiguity. Once



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Reference time

W
a
rp

e
d

 t
im

e

 

 

ground truth
LTI
our method

Figure 4: Comparing our method against LTI for timing
prediction: the comparison curves show the time warping functions
from our method, LTI and ground truth data. The evaluation is
based on cross validation described in Section 7.2.

the model parameters are estimated, we can use the model to
translate the current pose into the output pose with the simple
linear transformations described in Equation (2). The local model
avoids the problem of finding an appropriate structure for a global
model, which would necessarily be complex and highly nonlinear
for heterogeneous actions. Instead, we assume that a series of local
autoregressive models are sufficient to approximate a complex,
nonlinear function for style translation. Figure 3 shows the
advantage of our method over two alternative methods: LTI [Hsu
et al. 2005] and a global autoregressive model.

We represent the input poses in terms of the original timeline of
the input motion data while the output poses are defined in the
canonical timeline of the reference motion data in the preprocessed
database. The output poses therefore are synthesized in the
canonical timeline of reference motion data and we must predict
the timing for the output poses.

Timing prediction. Timing prediction is crucial to style translation
because different styles of the same action often differ significantly
in speed. Our task here is to predict the time difference w(n) =
t(n)− t(n−1) between the current and previous poses in the output
style. As with the pose prediction, we apply K-nearest neighbor
interpolation to predict the timing of the current pose in the output
style. For the current pose, we first compute its distance to K closest
examples in the database and then assign each of closest examples
a weight based on their distance to the current pose. These weights
are then applied to predict the timing difference of the current
pose in the output style by interpolating the corresponding timing
differences of the closest examples in the database. We choose
Gaussian functions as our interpolation kernel. The larger the
distances, the smaller the weights. We normalize the weights to
ensure they sum to one.

A remaining issue for timing prediction is how to choose an
appropriate distance metric for KNN searches. Our distance metric
considers both the input and output styles. Note that before timing
prediction, we have already synthesized the current pose in the
output style. We define the distance metric based on a combination
of four features, including the current pose and pose velocity of
the input frame, the synthesized pose of the output style, and
the synthesized pose velocity of the output style in the canonical
timeline. Figure 4 shows a cross validation result on our method

and LTI (please refer to the details in Section 7.2).

5.2 Handling Unlabeled Motion Data

We now extend the online local regression model described in
Section 5.1 to handle unlabeled input motion. We use the
annotation information in the training data to achieve this goal.
Briefly, we annotate the training data in terms of behavior and
style attributes in the preprocessing step. At run time, we construct
local autoregressive models corresponding to every combination of
predefined behaviors and styles and predict the output poses by
interpolating/extrapolating the prediction results obtained by each
of local model in a probabilistic framework of mixture of regression
models.

Mixture of regression models [Wong and Li 2000] provides a way
to model the regression function when it arises from a number of a
priori known classes j = 1, ...,c with unknown proportion λ j. We
model the complex relationship between the input and output styles
using the following MAR model:

f (yt |ut) =
c

∑
j=1

λ jφ(yt |uT
t β

j
t ,σ

2
j ). (3)

These equations describe the relationship between an input ut =
[xt−1,yt−1,xt ,1]T and an output pose yt , where λ j, j = 1, ...,c are
the mixing proportions, each of which is a probability (a real
number between 0 and 1, inclusive), all of which sum to 1. β

j
t

and σ j are the autoregressive model parameters and variances of
the j-th class. Note that φ(·|µ,τ2) denotes the normal density with
mean µ and variance τ2.

We define the number of a priori known classes based on the
annotation information in the preprocessed database. Each frame in
the training data belongs to a particular class, which is associated
with a particular combination of action and style. When an
explicit request for prediction is received, we search the K nearest
neighbors in each class j = 1, ..,c and use them to construct local
autoregressive models yt = uT

t β
j

t +ε
j

t , j = 1, ...,c corresponding to
each class using the least square regression technique described in
Section 5.1.

The proportion weights λ j are prior probabilities of a particular
class j. We compute the prior probability of a particular class j
based on the average distance between the current frame and its K
nearest neighbors:

λ j ∝ exp(−
D j

δ min j D j
), j = 1, ...,c, (4)

where D j is the average distance between the current frame and its
K nearest neighbors. The kernel width δ is experimentally set to
0.7. We normalize the proportion weights λ j so that they sum to 1.

Once we learn the mixture of autoregressive models, we can use it
to predict the pose in the output style. This prediction is achieved
by calculating the expectation of the random variable yt :

E(yt) =
∫

yt f (yt |ut)dyt

=
∫

yt ∑
c
j=1 λ jφ(yt |uT

t β
j

t ,σ
2
j )dyt

= ∑
c
j=1 λ j

∫
ytφ(yt |uT

t β
j

t ,σ
2
j )dyt

= ∑
c
j=1 λ juT

t β
j

t .

(5)

The last derivation step is based on the fact that the expectation of a
normal distribution φ(·|µ,τ2) is its mean µ . The same idea is used
to predict the timing of each output pose.

We apply a similar idea to translate partially labeled motion data
into the output styles. For example, if the input motion data



is “neutral”, we can search “neutral” examples corresponding
to each action (e.g., neutral walking or neutral running) and
use K nearest neighbors in each action to learn a mixture
of autoregressive models. The output style is synthesized by
appropriately interpolating the prediction poses corresponding to
each class. In addition, to handle unlabeled/partially labeled motion
data, we also extend our timing prediction model to a mixture of
KNN interpolation models in the same way as the MAR model.

5.3 Autoregressive Model with Bias

When the input motion is significantly different from the motions
in the database, the system may output motions with artifacts.
The ideal solution, of course, is to expand the training set, but
that is often impossible. Here we describe how to extend our
autoregressive model by blending the original input into the output
of the prediction model when such events occur.

The key idea of our autoregressive model with bias is to introduce a
confidence interval (µ−κσ ,µ+κσ) for a regression model, where
κ defines the confidence interval, µ is the mean of the training
inputs, and σ is the standard deviation of the training inputs. If
the input variable xt falls inside the interval, we assume the trained
regression model is reliable and can be used to accurately predict
the output style. When the input variable xt lies outside of the
interval (e.g., xt ≤ µ − κσ ), we deem the prediction not reliable.
This observation leads us to introduce a bias term ∆x to move the
input variables inside the interval so that the prediction will be
reliable:

xt = xt −∆x
xt−1 = xt−1−∆x, (6)

where ∆x = xt − µ ± κσ represents the bias between the input
variable xt and the boundary of the confidence interval µ±κσ . We
include the same bias term into the input variable in the previous
frame xt−1 in order to preserve derivative information in the input
motion. However, introducing the bias term to the input variables xt
and xt−1 causes a loss of the original styles in the input variable. To
address the issue, we introduce a corresponding bias term ∆y= ρ∆x
to the output variables:

yt = yt −ρ∆x
yt−1 = yt−1−ρ∆x, (7)

where ρ is a value between 0 and 1 indicating the preference of
style translation and content preservation. When ρ is set to “0”,
we focus on the translation of the style. If the user prioritizes the
preservation of the content, she can set ρ to a higher value (e.g.,
“1”). In practice, the user can choose an appropriate value for
ρ to balance the trade-off between content preservation and style
translation. In Section 7.4, we evaluate both the importance of the
bias term and the influence of different values of ρ on the resulting
animation.

5.4 Style Interpolation and Control

Style control is important to stylistic motion synthesis because
the emotions or roles of a character can be quite different and
often change over time. Our system allows the user to control
the style of the output animation at run time by blending the
parameters of distinctive styles. For example, we can translate a
“neutral” walk into an “angry”-“strutting” walk by appropriately
interpolating the two output styles: “angry” and “strutting”. In
our implementation, we represent the output style as a non-negative
combination of styles in the database. This representation enables
us to define the output style using a continuous vector s(t) =
[s1(t),s2(t), . . . ,s8(t)]T that stacks the blending weights of each
style. The user can control the interpolation weights to interpolate

Figure 5: Online style control: (left) interface for interpolating two
distinctive styles; (right) interface for interpolating three distinctive
styles. The user can select which vertices to interpolate as well
as their interpolation weights at run time. Note that each polygon
vertex defines a distinctive style. The red vertices are interpolation
vertices. The yellow bars show the scales of interpolation weights.

two or three distinctive styles (see the accompanying video).
Figure 5 shows our visualization interfaces for interpolating distinct
styles.

6 Postprocessing

Given a good training set, our model outputs high-quality
motions, but it may violate kinematic constraints imposed by the
environment. The most visible artifact is footskate, which can be
corrected by existing methods if the footplants are annotated [Kovar
et al. 2002]. We introduce a simple yet effective classifier to
automatically annotate the footplant constraints in input/output
motion data.

We apply KNN classification techniques to automatically label
the contact information of the input motion data. To annotate
each input frame, we first search for the K nearest neighbors in
the database. In the preprocessing step, each database pose was
annotated using classes defined by binary footplant annotations,
where “1” indicates that footplant is “on” and “0” means “off”.
We compute the distance using the metric described in Equation
(1), except that we now set the weights of upper body joints to
0. We evaluate the likelihood of footplant constraints being “on”
or “off” by weighing each instance’s class based on the inverse
of its distance to the query pose. We reduce classification noise
by applying Gaussian filters to smooth the likelihood values. The
system assumes that the footplant constraint is “on” when the
likelihood of footplant constraints being “on” is higher than the
likelihood of being “off”. If there is contact between the character
and the environment (e.g., the left foot must be planted on the
ground), we apply an inverse kinematics technique to ensure that
the contact point on the character is located on the corresponding
contact plane.

7 Results

We demonstrate the power and effectiveness of our method on a
wide variety of human movements (Section 7.1). In Section 7.2,
we compare our method against alternative methods for online style
transfer, including LTI models [Hsu et al. 2005] and Gaussian
process models [Ikemoto et al. 2009]. Section 7.3 evaluates
the generalization ability of our model. Finally, we perform
experiments to evaluate the key components of our model in terms
of the importance of local mixtures of autoregressive models,
the benefit of the bias term and with/without the use of labeling
(Section 7.4). Our results are best seen in the accompanying main



video as well as the evaluation video.

Action Length (frames)
A 49461
B 7835
C 6293
D 7125
E 6970
F 2145

Total 79829

Table 1: Details of our stylistic motion database. A: walking with
different step sizes, speeds and turning angles; B: running with
different speeds and turning angles; C: jumping; D: punching; E:
kicking; F: transition actions.

Table 1 shows the details of our stylistic motion database. Each
action listed in the table contains eight styles, and the total length
of the database is about 11 minutes (79829 frames). The input to
our style translation system is very flexible and can be in various
forms. We have tested our system on input motion data captured by
Vicon [2015], animation generated by motion synthesis techniques
(e.g., motion graphs [Kovar et al. 2002]), and key-framed animation
created by an artist.

Our system is appealing to online style transfer because it has very
few parameters to be tuned. Specifically, the entire system has three
key parameters. For all the results reported in the paper, the number
of nearest neighbors (K) is set to 40, the bias value (ρ) is set to 0.7
and the regularization weight (λ ) is set to 0.1.

Computation times. Our system achieves real-time performance
on a PC with Intel(R) Xeon(R) processor E3-1240 3.40GHz and
NVIDIA graphic card GTX 780T (3GB). Table 2 summarizes
computation times per frame for all the key components of our
system. Our KNN search process is based on the entire prerecorded
motion database. In the current implementation, we speed up
the KNN searching process and the pose regression process with
GPU acceleration while the rest components of the system are
implemented on CPU. The system requires constant memory at
run-time. For the current size of our training database, the memory
usage for GPU and CPU is about 200Mb and 90Mb, respectively.

7.1 Test on Real Data

We have tested our method on heterogeneous motion data
containing walking, running, jumping, kicking, punching and their
transitions and on walking with a wide range of motion variations.
In addition, we show that our system allows the user to control
output style of human motion on the fly by blending the parameters
of distinctive styles. For all the results shown here, we assume that
both the content and style of the input motion data are not known.

Heterogeneous actions. The goal of this experiment is to evaluate
the performance of the system when handling heterogeneous
motion data. Figure 1 shows the results for a test motion sequence
with heterogeneous actions, including running, walking, jumping
and walking. We also transformed an input motion sequence
(walking, punching, kicking, jumping to walking) into different
styles. The results in the accompanying video show that the system
produces high-quality animation in the output styles.

Homogeneous actions. We applied various styles to new walking
sequences with different speeds, step sizes, turning angles, and
subjects. Our first evaluation used a walking motion (“walk along
a circle”) generated by motion graphs [Kovar et al. 2002]. Next,
we translated a walking motion containing big steps, sharp turning,

Component Time (ms) Ratio (%)
KNN search 7.31 40.4%
MAR for spatial-temporal regression 9.7 53.60
Post-processing 1.09 6%
Total 18.1 100%

Table 2: Computation times for each component of our system.

and speeding up into various styles. We also tested our system on
walking data obtained from different human subjects downloaded
from the CMU mocap database. Our system yielded consistently
good results that exhibited transfer of large-scale content and fine
detail.

Online style interpolation and control. In this experiment, we
translated a “neutral” walking motion into various mixed styles
such as “old-proud” walking and “depressed-angry-sexy” walking.
The accompanying video shows the user can continuously control
the output style at run time. The test motion data, which was
generated by motion graphs [Kovar et al. 2002], consists of a
walking motion with random changes in speed and direction.

7.2 Evaluation and Comparison

In this experiment, we compare our method against alternative
methods for style transfer, including LTI models [Hsu et al. 2005]
and Gaussian process (GP) regression models [Ikemoto et al. 2009].
We assume that both the behavior and style of test motion data are
known in advance as such labeling information is required by both
alternative methods.

7.2.1 Comparison Against Linear Time-invariant Model

We have compared our method against the style translation method
proposed previously [Hsu et al. 2005]. We implemented the style
translation algorithm described by Hsu and colleagues [2005].
Briefly, we applied iterative motion warping (IMW) to
automatically compute dense correspondences between example
motions and applied LTI models constructed from the preprocessed
training examples to translate input motion data into various styles.
In addition, we used the post-processing techniques described in
their paper to improve the quality of the output animation. Similar
to Hsu and colleagues [2005], our method also used IMW to
register training examples.

Our evaluation is based on leave-one-out cross-validation on both
homogeneous and heterogeneous data sets. Specifically, we used a
single motion sequence from the data sets as the validation data
and the remaining sequences as the training data. This test is
repeated such that each sequence in the whole data set is used
once as validation data. We computed the synthesis errors for
both pose and timing. We measured the pose error as the average
3D joint position discrepancy between the synthesized poses and
the ground truth poses. The temporal error was computed as the
average temporal difference between the synthesized timings and
the ground truth timings. Figure 6 shows the cross validation results
for both methods.

Leave-one-out evaluation on homogeneous data set. We have
evaluated the performance of both methods on two different data
sets of walking. We first tested the methods on the MIT walking
data used by Hsu and colleagues [2005]. We downloaded three
cycles of walking data (“normal” and “crouch”) and used them
to perform a leave-one-out evaluation for both methods. Next,
we compared our method against LTI on our own data sets.
Specifically, we tested both methods on translating walking data



Hsu[05]’s dataset walking walking+running+jumping
0

5

10

15

jo
in

t 
p

o
s

it
io

n
 e

rr
o

r(
c

m
)

 

 

LTI

our method

Hsu[05]’s dataset walking walking+running+jumping
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
m

p
o

ra
l 

e
rr

o
r(

m
s

)

 

 

LTI

our method

Figure 6: Leave-one-out cross-validation on our method and LTI: (left) comparisons of pose synthesis errors; (right) comparisons of timing
prediction errors. The evaluation is based on three different data sets: the MIT data set, our walking data set, and our heterogeneous data
set of walking, running, and jumping.

from the “neutral” style into the “proud” style via cross-validation.
Figure 6 shows that our method produces more accurate synthesis
results for both pose and timing.

Leave-one-out evaluation on heterogeneous data set. A major
benefit of our method is in the ability to handle heterogeneous
input motion data. This experiment shows the ability of both
methods to translate heterogeneous motion data into a different
style. We evaluated both methods on heterogeneous motion data
from walking, running and jumping. Our method produces much
more accurate results than LTI (see the accompanying video).

Comparison on real data. We have also applied both methods to
translate real heterogeneous motion data into various styles. The
evaluation video shows the comparison results for two sequences:
running⇒walking and running⇒walking⇒ jumping⇒walking.
Our method produces high-quality animation for both sequences
while LTI fails to obtain satisfactory results for either sequence.

7.2.2 Comparison Against Gaussian Process Regression

We compared our method with a Gaussian process regression
model [Ikemoto et al. 2009]. In particular, Ikemoto and
colleagues [2009] used Gaussian process regression to learn the
transformation between the input and output motion sequences to
solve the generalized motion editing problem. In addition, they
used a stabilized predictor to handle input data that is not in the
training database. For comparison, we adopted a similar idea for
solving the style translation problem. Specifically, we applied the
GP algorithm to model the motion differences between the input
and output styles and used the learned GP regression model as well
as the stabilized predictor to synthesize stylized output animation.
Our GP implementation is based on the GPML toolbox [Rasmussen
and Nickisch 2010].

We have tested both methods on homogeneous and heterogeneous
motions via leave-one-out evaluation. For the first experiment,
the training examples are one pair of “proud”/“neutral” walking
data (236 frames and 241 frames, respectively). As shown in
the evaluation video, both methods produce high-quality output
animation. We also tested on heterogeneous data sets including
walking, running, jumping, and transition actions from jumping
to walking. The evaluation video shows that GP regression fails
to produce satisfactory results, while our method does. One
reason for this difference in performance is that Gaussian process

Type LHom LHet UHom UHet
Hsu et al. G P N/A N/A

Ikemoto et al. G P N/A N/A
Our method G G G G

Table 3: Summary of the comparison against alternative methods.
LHom: labeled homogeneous input motion; UHom: unlabeled
homogeneous input motion; LHet: labeled heterogeneous input
motion; UHet: unlabeled heterogeneous input motion; P: poor
results; G: good results; N/A: results are not available because the
algorithm cannot handle unlabeled input motion data.

regression scales poorly with large quantities of training data from
heterogeneous data sets. GP regression is well suited for their task
of artistic motion editing because they do not have large quantities
of training data.

7.2.3 Comparison Summary

We now summarize our two comparisons (see Table 3). Both
LTI [Hsu et al. 2005] and GP regression [Ikemoto et al. 2009]
assume that input motion is labeled in advance. Therefore, they
cannot effectively handle “unlabeled” input motion sequences
(homogeneous or heterogeneous). For heterogeneous input motion
data (“labeled” or “unlabeled”), neither method can achieve
satisfactory results. The evaluation shows that our method obtains
consistently better results than the alternative methods for all of our
test data. More significantly, our method can handle “unlabeled”
and/or “heterogeneous” input motion sequences, a capability that
was not been demonstrated in any previous method.

7.3 Evaluation on Motion Generalization

One advantage of our model is the ability to handle motion data
that differs from the prerecorded motion data. We tested our
system on “dinosaur” walking downloaded from the CMU mocap
database and “robotic” locomotion keyframed by an artist (see
the accompanying video). Note that both motion sequences differ
stylistically from motions in the database. We assume both motion
sequences are unlabeled in terms of style and action attributes. The
accompanying video shows that the system generates high-quality
animation in various styles.



To further evaluate the generalization ability of our model, we
tested two more motions that differ from those in the training
database. The first one is a motion obtained from the CMU
mocap database called “exaggerated walking”. It was used as an
input motion with the style unlabeled and the action labeled as
“walking”. Figure 7(a) shows the closest poses in the database for a
few sample frames of the input motion. As shown in the evaluation
video, the synthesized motion not only successfully changes the
style but also preserves the “exaggerated” features of the original
motion. Another test motion is also from the CMU mocap database,
called “mummy walking”, had the style unlabeled and the action
labeled as “walking”. Figure 7(b) shows the nearest neighbors in
the database for a few sample frames. Those poses are not similar,
indicating that the input motion is very different from the training
data. Our method still yields a satisfactory stylistic motion, as
shown in the evaluation video. The “mummy” indeed appears
“proud”,“sexy”, and “depressed”.

In our last motion generalization evaluation, we attempted
cross-action style translation. The evaluation video shows our
results for using a “walking” database to transfer styles for
“running” and “jumping” and using a “running” database to transfer
styles for “walking” and “jumping”. Figure 7(c) and Figure 7(d)
show the three nearest neighbors of some sample frames for
“walking” and “jumping” sequences when the training data is
“running”. This evaluation shows that our method can still generate
styles even when the input action is not in the training data.

7.4 Component Evaluations

In this section, we evaluate the key components of our style
modeling and synthesis process. Our results are seen in the
accompanying evaluation video.

Importance of the MAR model. To justify the importance of
local mixture models, we compared our model against classic
local regression models, including Nearest Neighbors (NN), KNN
interpolation (KNN), and a local autoregressive model. The
evaluation video shows the comparison against alternative local
regression models on two input motion sequences obtained from
the CMU mocap database. The first one is called “run and leap”,
and the second one is called “Mickey walking”. We process
them with both action and style unlabeled. Neither motion is
the training database in those styles, although the database does
contain other runs, leaps and walks. We used the same number of
nearest neighbors for all methods. As shown in the accompanying
evaluation video, our method produces superior results when
compared to the other local models.

Benefit of the bias term. The bias term is crucial for input
motion data that are outside the space explored in the training
data. To demonstrate the importance of the bias term to our
model, we compared the synthesis results using the MAR model
with and without the bias term. The accompanying video shows
a side-by-side comparison between the two. Without the bias
term, the system failed to produce high-quality output animation.
With the bias term, the output animation can not only transfer the
style but also preserve the content of the original motion, thereby
producing satisfactory results.

Evaluation of different bias values. We have evaluated the
influence of different bias values on the output animation. In
this experiment, we set the bias values to 0.0, 0.3, 0.7, and 1.0,
respectively. The input sequence is a “marching” motion from the
CMU mocap database, with the action labeled as “walking” and
the style unlabeled. We transferred the input motion into a “proud”
style. The accompanying video shows synthesized stylistic motions
corresponding to different bias values. Setting the bias value to

0.0 focuses on style translation; the output animation therefore
loses some fine details of the original “marching” motion. As we
gradually increase the bias value, the output animation exhibits
more of the details of the input motion, especially for the lower
body. For all of the results shown in the paper, we set the bias value
to 0.7, which keeps a good balance between style translation and
detail preservation.

With/without labeling. One unique property of our system is its
capability to work with unlabeled, heterogeneous motion data. This
experiment evaluates the performances of our method on different
labeling conditions. In particular, we tested our algorithm on
an input motion sequence with four different labeling conditions:
“action labeled”, “style labeled”, “both labeled” and “neither
labeled”. The evaluation video shows a side-by-side comparison on
a test motion sequence containing running, walking, jumping, and
walking, as well as their transitions. For each labeling condition,
the system produces slightly different yet consistently good output
animation.

8 Conclusion

In this paper, we have developed a realtime data-driven animation
system for stylistic motion synthesis and control. The main
contribution of our work is to introduce a time-varying mixture
of autoregressive models for representing the complex relationship
between the input and output styles. In addition, we have
developed an efficient online local regression model to predict
the timing of synthesized poses. Our system is appealing for
online style translation and control because it runs in real time,
produces high-quality animation in various styles, works well for
unlabeled, heterogeneous motion data, and can handle motions that
are significantly different from the training data sets.

Our system was designed to add various styles or emotions to
existing animation. Therefore, users should not expect to use our
system to generate animation from scratch. One way to address
this limitation is to combine our technique with existing motion
synthesis techniques. In our experiments, we have combined our
style transformation technique with motion graphs to synthesize
both motion and style for output animation (e.g., walking proudly
while following a circle). In the future, we would like to continue
this effort and integrate our technique into existing motion synthesis
systems (e.g., [Min and Chai 2012]) or performance animation
systems (e.g., [Wei et al. 2012]). Such applications would
significantly improve the utility of an animation system because the
users now not only can control the content of an output animation
but also its emotions or styles.

Thus far, we have tested our system on eight distinct styles
and heterogeneous actions including walking, running, jumping,
kicking, and punching. In the future, we would like to include more
actions and more styles in the training database. We believe that
some elements of our new representation could be applied to many
applications in human motion analysis and synthesis. For example,
our online local mixture models could be extended to recognizing
actions and styles from input motion data obtained from Kinect
cameras. Therefore, one immediate direction for future work is
to investigate the applications of our data-driven models in human
motion analysis and synthesis.

Acknowledgement

This material is based upon work partially supported by the
National Science Foundation under Grants No. IIS-1065384
and IIS-1055046, National Natural Science Foundation of China



Figure 7: Nearest neighbors of input motions (in ascending order). Green represents sample poses of an input motion and red shows the three
closest neighbors from the database. The input motions from left to right are “exaggerated walking”,“mummy walking”,“neutral walking”,
and “neutral jumping”. Note that the training database for “neutral walking” and “neutral jumping” sequences only contained running
data.

(No.61173055), and National Key Technology R&D Program of
China (No.2013BAK03B07).

References

AHA, D. W. 1997. Editorial, Special issue on lazy learning. In
Artificial Intelligence Review. 11(1-5):1–6.

AMAYA, K., BRUDERLIN, A., AND CALVERT, T. 1996. Emotion
from motion. In Proceedings of Graphics Interface 1996,
222–229.

BRAND, M., AND HERTZMANN, A. 2000. Style machines. In
Proceedings of ACM SIGGRAPH 2000, 183–192.

CHAI, J., AND HODGINS, J. 2005. Performance animation
from low-dimensional control signals. ACM Transactions on
Graphics 24, 3, 686–696.

CHAI, J., AND HODGINS, J. 2007. Constraint-based
motion optimization using a statistical dynamic model. ACM
Transactions on Graphics 26, 3, Article No. 8.

GRASSIA, F. S. 1998. Practical parameterization of rotations using
the exponential map. Journal of Graphics Tools 3, 3, 29–48.

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND
POPOVIĆ, Z. 2004. Style-based inverse kinematics. ACM
Transactions on Graphics 23, 3, 522–531.

HSU, E., PULLI, K., AND POPOVIĆ, J. 2005. Style translation
for human motion. ACM Transactions on Graphics 24, 3,
1082–1089.

IKEMOTO, L., ARIKAN, O., AND FORSYTH, D. 2009.
Generalizing motion edits with gaussian processes. ACM
Transactions on Graphics 28, 1, 1:1–1:12.

KOVAR, L., AND GLEICHER, M. 2003. Registration curves.
In ACM SIGGRAPH/EUROGRAPH Symposium on Computer
Animation. 214–224.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction
and parameterization of motions in large data sets. ACM
Transactions on Graphics 23, 3 (Aug.), 559–568.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. ACM Transactions on Graphics 21, 3 (July), 473–482.

LAU, M., BAR-JOSEPH, Z., AND KUFFNER, J. 2009. Modeling
spatial and temporal variation in motion data. ACM Transactions
on Graphics 28, 5, Article No. 171.

MIN, J., AND CHAI, J. 2012. Motion graphs++: A compact
generative model for semantic motion analysis and synthesis.
ACM Transactions on Graphics 31, 6, 153:1–153:12.

MIN, J., LIU, H., AND CHAI, J. 2010. Synthesis and editing of
personalized stylistic human motion. In Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 39–46.

MONZANI, J., BAERLOCHER, P., BOULIC, R., AND THALMANN,
D. 2000. Using an intermediate skeleton and inverse kinematics
for motion retargeting. Computer Graphics Forum 19, 3, 11–19.

RASMUSSEN, C. E., AND NICKISCH, H. 2010. Gaussian
processes for machine learning (gpml) toolbox. Journal of
Machine Learning Research 11, 3011–3015.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs
and adverbs: Multidimensional motion interpolation. In IEEE
Computer Graphics and Applications. 18(5):32–40.

SHAPIRO, A., CAO, Y., AND FALOUTSOS, P. 2006. Style
components. In Proceedings of Graphics Interface 2006, 33–39.

VICON, 2015. http://www.vicon.com.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A.
2007. Multifactor gaussian process models for style-content
separation. Proceedings of the 24th International Conference
on Machine Learning. 975-982.

WEI, X., ZHANG, P., AND CHAI, J. 2012. Accurate realtime
full-body motion capture using a single depth camera. ACM
Transactions on Graphics 31, 6 (Nov.), 188:1–188:12.

WONG, C. S., AND LI, W. K. 2000. On a mixture autoregressive
model. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 62, 1, 95–115.


